skip to main content


Search for: All records

Creators/Authors contains: "Ben-Itzhak, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We experimentally study the enhancement of high-order harmonic generation (HHG) driven by synthesizedω<#comment/>−<#comment/>3ω<#comment/>laser fields, where we control whether the ionization rate or the electron wave packet’s diffusion is the dominant enhancement mechanism. When minimizing the electron wave packet’s diffusion, the excursion times of the corresponding electron trajectories are reduced by a factor of 2 or more. This result is important for imaging techniques that use the returning electron wave packet to probe the remaining ion. Furthermore, we achieve a10×<#comment/>to3800×<#comment/>enhancement of the harmonic yield driven by the bichromatic fields relative to that of an optimized single-color field, showing that the bichromatic fields improve HHG’s capability as a light source. We also measure that the two-color field’s harmonics have half the divergence angle compared to their single-color counterpart, suggesting that the “short” electron trajectories play a more prominent role compared to their “long” trajectory counterparts, thus improving the wavefront of the emerging harmonic beam.

     
    more » « less
  2. null (Ed.)
    An adaptive learning algorithm coupled with 3D momentum-based feedback is used to identify intense laser pulse shapes that control H 3 + formation from ethane. Specifically, we controlled the ratio of D 2 H + to D 3 + produced from the D 3 C-CH 3 isotopologue of ethane, which selects between trihydrogen cations formed from atoms on one or both sides of ethane. We are able to modify the D 2 H + : D 3 + ratio by a factor of up to three. In addition, two-dimensional scans of linear chirp and third-order dispersion are conducted for a few fourth-order dispersion values while the D 2 H + and D 3 + production rates are monitored. The optimized pulse is observed to influence the yield, kinetic energy release, and angular distribution of the D 2 H + ions while the D 3 + ion dynamics remain relatively stable. We subsequently conducted COLTRIMS experiments on C 2 D 6 to complement the velocity map imaging data obtained during the control experiments and measured the branching ratio of two-body double ionization. Two-body D 3 + + C 2 D 3 + is the dominant final channel containing D 3 + ions, although the three-body D + D 3 + + C 2 D 2 + final state is also observed. 
    more » « less
  3. null (Ed.)